论文标题

从淬灭的角度来看,非线性$ q $ -VOTER模型

Nonlinear $q$-voter model from the quenched perspective

论文作者

Jędrzejewski, Arkadiusz, Sznajd-Weron, Katarzyna

论文摘要

我们比较了两个版本的非线性$ q $ - 投票器模型:原始版本,带有退火的随机性和经过修改的版本,具有淬火的随机性。在原始模型中,如果影响组不是一致的,则每个选民都会用一定概率$ε$改变其意见。相比之下,修改后的版本引入了两种类型的选民,这些选民在影响小组分歧的情况下以确定性的方式采取行动:选民的分数$ε$始终会改变他们当前的意见,而其余的人总是维持它。尽管两种随机性的概念都会在微观水平上导致系统的平均意见变化数量,但它们在宏观级别上定性上有明显的结果。我们专注于这些模型的平均场所描述。我们的方法依赖于在动态系统理论中开发的线性化技术的稳定性分析。这种方法使我们能够为这两个模型得出完整,精确的相图。本文获得的结果表明,淬灭的随机性在更大程度上促进了连续的相变,而退火的随机性则有利于不连续的。淬灭模型还创建了在退火模型中未观察到的连续和不连续相变的组合,其中上向对称性可能会自发地在滞后环内部或外部自发折断。通过在完整图上进行的蒙特卡洛模拟证实了分析结果。

We compare two versions of the nonlinear $q$-voter model: the original one, with annealed randomness, and the modified one, with quenched randomness. In the original model, each voter changes its opinion with a certain probability $ε$ if the group of influence is not unanimous. In contrast, the modified version introduces two types of voters that act in a deterministic way in case of disagreement in the influence group: the fraction $ε$ of voters always change their current opinion, whereas the rest of them always maintain it. Although both concepts of randomness lead to the same average number of opinion changes in the system on the microscopic level, they cause qualitatively distinct results on the macroscopic level. We focus on the mean-field description of these models. Our approach relies on the stability analysis by the linearization technique developed within dynamical system theory. This approach allows us to derive complete, exact phase diagrams for both models. The results obtained in this paper indicate that quenched randomness promotes continuous phase transitions to a greater extent, whereas annealed randomness favors discontinuous ones. The quenched model also creates combinations of continuous and discontinuous phase transitions unobserved in the annealed model, in which the up-down symmetry may be spontaneously broken inside or outside the hysteresis loop. The analytical results are confirmed by Monte Carlo simulations carried out on a complete graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源