论文标题
涉及参数依赖性矩阵的PDE特征值问题的近似
Approximation of PDE eigenvalue problems involving parameter dependent matrices
论文作者
论文摘要
我们讨论了与部分微分方程相关的特征值问题的解决方案,这些方程可以用广义形式$ \ m {a} x =λ\ m {b} x $,其中矩阵$ \ m {a} $和/或$ \ m {b} $可能取决于标量参数。当使用稳定的公式用于部分微分方程的数值近似时,经常发生参数依赖性矩阵。在经典数值示例的帮助下,我们表明一个(或两个)参数的存在会产生意外的结果。
We discuss the solution of eigenvalue problems associated with partial differential equations that can be written in the generalized form $\m{A}x=λ\m{B}x$, where the matrices $\m{A}$ and/or $\m{B}$ may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilized formulations are used for the numerical approximation of partial differential equations. With the help of classical numerical examples we show that the presence of one (or both) parameters can produce unexpected results.