论文标题

图形中半统治的注释

A note on semitotal domination in graphs

论文作者

Zhuang, Wei

论文摘要

$ g $中的$ s $顶点是$ g $的半统治集,如果它是$ g $的$ g $,并且$ s $中的每个顶点都在另一个$ s $的另一个顶点的距离$ 2 $之内。 \ emph {半统治数},$γ_{t2}(g)$,是$ g $的半统治集的最小基数。图$ g $,$ msd_ {γ_{γ_{t2}}}(g)$的\ emph {emph {emph {emph {emph {emph {emph {emph {g $ g $} $是最小正整数$ k $,因此必须存在一个必须细分的$ k $的边缘,以增加$ k $ timples的$ g $ g $ $ g $ $ g $。在本文中,我们表明$ msd_ {γ_{t2}}(g)\ leq 3 $对于任何图的订单$ g $至少$ 3 $,我们还确定了某些图形类别的半统治多动型数,并用$ t $表征$ t $,并带有$ msd_ {γ_{γ_{γ_{γ_{t2}} $。另一方面,我们知道$γ_{t2}(g)$是一个参数,在统治数字,$γ(g)$和总统治数量,$γ_T(g)$之间挤压,因此对于任何树$ t $ $ \ frac {γ_T(t)} {γ_{t2}(t)} $,并呈现树木家族实现上限的建设性特征。

A set $S$ of vertices in $G$ is a semitotal dominating set of $G$ if it is a dominating set of $G$ and every vertex in $S$ is within distance $2$ of another vertex of $S$. The \emph{semitotal domination number}, $γ_{t2}(G)$, is the minimum cardinality of a semitotal dominating set of $G$. The \emph{semitotal domination multisubdivision number} of a graph $G$, $msd_{γ_{t2}}(G)$, is the minimum positive integer $k$ such that there exists an edge which must be subdivided $k$ times to increase the semitotal domination number of $G$. In this paper, we show that $msd_{γ_{t2}}(G)\leq 3$ for any graph $G$ of order at least $3$, we also determine the semitotal domination multisubdivision number for some classes of graphs and characterize trees $T$ with $msd_{γ_{t2}}(T)=3$. On the other hand, we know that $γ_{t2}(G)$ is a parameter that is squeezed between domination number, $γ(G)$ and total domination number, $γ_t(G)$, so for any tree $T$, we investigate the ratios $\frac{γ_{t2}(T)}{γ(T)}$ and $\frac{γ_t(T)}{γ_{t2}(T)}$, and present the constructive characterizations of the families of trees achieving the upper bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源