论文标题
在有限解决和对称组的主要覆盖物上
On the Primary Coverings of Finite Solvable and Symmetric Groups
论文作者
论文摘要
有限的组$ g $的主要覆盖物是$ g $的适当亚组的家族,其工会包含$ g $的元素集合,并具有命令的命令。我们用$σ_0(g)$表示$ g $的主要覆盖物的最小尺寸,并将其称为$ g $的主要覆盖号码。我们研究了这个数字,并将其与其类似的$σ(g)$(覆盖号)进行比较,用于可解决$ g $的类别$ g $类别。
A primary covering of a finite group $G$ is a family of proper subgroups of $G$ whose union contains the set of elements of $G$ having order a prime power. We denote with $σ_0(G)$ the smallest size of a primary covering of $G$, and call it the primary covering number of $G$. We study this number and compare it with its analogous $σ(G)$, the covering number, for the classes of groups $G$ that are solvable and symmetric.