论文标题

在$ \ mathbb {z} _ {pq} $的强Skolem启动器上

On strong Skolem starters for $\mathbb{Z}_{pq}$

论文作者

Vázquez-Ávila, Adrián

论文摘要

1991年,N。Shalaby猜想了任何添加剂$ \ Mathbb {z} _n $,其中$ n \ equiv1 $或3(mod 8)和$ n \ geq11 $都承认了强大的Skolem启动器,并构建了所有可允许的订单的启动器,所有可允许的订单$ 11 \ leq n \ leq n \ leq leq leq57 $。 Shalaby和等。 [O. Ogandzhanyants,M。Kondratieva和N. Shalaby,\ Emph {Strong Skolem Starters},J。Combin。 des。 {\ bf 27}(2018),否。如果$ n =π_{i = 1}^{k} p_i^{α_i} $,则证明了1,5--21],其中$ p_i $是一个质量数字,以至于$ ord(2)_ {p_i} \ equiv 2 $ 2 $(mod 4)和$α_i$ $ a $ $ a $ $ $ $ $ k $ k k $ k k k k k k l i = l. $ \ mathbb {z} _n $允许一个强大的Skolem启动器。另一方面,作者[A. vázquez-ávila,\ emph {关于强的Skolem启动器的注释},离散数学。 [接受]与Shalaby等人相比,为$ \ mathbb {z} _p $提供了强大的Skolem开胃菜的不同家族,其中$ p \ equiv3 $(mod 8)是一个奇怪的素数。最近,作者[A. Vázquez-ávila,\ emph {skolem Starters的新家庭,提交的]给出了与Shalaby等人相比,$ \ mathbb {z} _ {z} _ {z} _ {p^n} $的不同家族比Shalaby等人,其中$ p \ equiv3 $(mod 8)和$ n $是一个更大的integer。 在本文中,我们为$ \ mathbb {z} _ {pq} $组成的一些强大的SkoLem开胃股份,其中$ p,q \ equiv3 $(mod 8)是质量数字,使得$ p <q $ and $ p <q $ and $(p-1)\ nmid(q-nmid(q-1)$。

In 1991, N. Shalaby conjectured that any additive group $\mathbb{Z}_n$, where $n\equiv1$ or 3 (mod 8) and $n \geq11$, admits a strong Skolem starter and constructed these starters of all admissible orders $11\leq n\leq57$. Shalaby and et al. [O. Ogandzhanyants, M. Kondratieva and N. Shalaby, \emph{Strong Skolem Starters}, J. Combin. Des. {\bf 27} (2018), no. 1, 5--21] was proved if $n=Π_{i=1}^{k}p_i^{α_i}$, where $p_i$ is a prime number such that $ord(2)_{p_i}\equiv 2$ (mod 4) and $α_i$ is a non-negative integer, for all $i=1,\ldots,k$, then $\mathbb{Z}_n$ admits a strong Skolem starter. On the other hand, the author [A. Vázquez-Ávila, \emph{A note on strong Skolem starters}, Discrete Math. Accepted] gives different families of strong Skolem starters for $\mathbb{Z}_p$ than Shalaby et al, where $p\equiv3$ (mod 8) is an odd prime. Recently, the author [A. Vázquez-Ávila, \emph{New families of strong Skolem starters}, Submitted] gives different families of strong Skolem starters of $\mathbb{Z}_{p^n}$ than Shalaby et al, where $p\equiv3$ (mod 8) and $n$ is an integer greater than 1. In this paper, we gives some different families of strong Skolem starters of $\mathbb{Z}_{pq}$, where $p,q\equiv3$ (mod 8) are prime numbers such that $p<q$ and $(p-1)\nmid(q-1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源