论文标题
最大程度地减少在碰撞约束下,基于认知无线电系统系统的信息时代
Minimizing the Age of Information of Cognitive Radio-Based IoT Systems Under A Collision Constraint
论文作者
论文摘要
本文考虑了一种基于认知无线电的物联网监测系统,该系统由IoT设备组成,该系统旨在使用认知无线电技术将其测量结果更新为目的地。具体而言,IoT设备作为二级用户(SIOT)寻求并利用其主要用户(PU)撤离的许可频段的频谱机会,以提供状态更新,而不会对许可操作造成可见效果。在这种情况下,Siot应仔细利用许可的频段,并计划何时发送以保持状态更新的及时性。我们采用了最近的指标,即信息时代(AOI),以表征Siot状态更新的及时性。我们的目标是通过制定约束的马尔可夫决策过程(CMDP)问题来最大程度地减少SIOT的长期平均AOI,同时满足PU施加的碰撞约束。我们首先证明了CMDP问题的最佳平稳政策的存在。最佳的固定策略(称为年龄优势策略)被证明是一种随机的简单策略,它在两个确定性策略之间随机进行了固定概率。我们证明,这两个确定性策略具有阈值结构,并通过进行马尔可夫链分析,进一步得出了确定性阈值结构策略的平均AOI和碰撞概率的闭合形式表达。分析表达式提供了一种有效的方法来计算阈值和随机化概率,以形成年龄在最佳策略中。为了进行比较,我们还考虑了吞吐量最大化策略(称为吞吐量 - 最佳策略),并分析考虑系统中吞吐量 - 最佳策略下的平均AOI性能。数值模拟表明,派生的年龄优势优于吞吐量 - 最佳政策。我们还公布了各种系统参数对相应最佳策略和结果平均AOI的影响。
This paper considers a cognitive radio-based IoT monitoring system, consisting of an IoT device that aims to update its measurement to a destination using cognitive radio technique. Specifically, the IoT device as a secondary user (SIoT), seeks and exploits the spectrum opportunities of the licensed band vacated by its primary user (PU) to deliver status updates without causing visible effects to the licensed operation. In this context, the SIoT should carefully make use of the licensed band and schedule when to transmit to maintain the timeliness of the status update. We adopt a recent metric, Age of Information (AoI), to characterize the timeliness of the status update of the SIoT. We aim to minimize the long-term average AoI of the SIoT while satisfying the collision constraint imposed by the PU by formulating a constrained Markov decision process (CMDP) problem. We first prove the existence of optimal stationary policy of the CMDP problem. The optimal stationary policy (termed age-optimal policy) is shown to be a randomized simple policy that randomizes between two deterministic policies with a fixed probability. We prove that the two deterministic policies have a threshold structure and further derive the closed-form expression of average AoI and collision probability for the deterministic threshold-structured policy by conducting Markov Chain analysis. The analytical expression offers an efficient way to calculate the threshold and randomization probability to form the age-optimal policy. For comparison, we also consider the throughput maximization policy (termed throughput-optimal policy) and analyze the average AoI performance under the throughput-optimal policy in the considered system. Numerical simulations show the superiority of the derived age-optimal policy over the throughput-optimal policy. We also unveil the impacts of various system parameters on the corresponding optimal policy and the resultant average AoI.