论文标题

适用于可分离凸优化的不精确ADMM的收敛速率

Convergence rates for an inexact ADMM applied to separable convex optimization

论文作者

Hager, William W., Zhang, Hongchao

论文摘要

对于不精确加速的交替方向方法,建立了收敛速率(I-ADMM),用于使用线性约束的一般可分离凸优化。分析了沿阵行和非共性迭代。相对于迭代编号K,在凸设置中的收敛速率为O(1/K),在强凸设置中为O(1/K^2)。当误差结合条件保持时,该算法是2步线性收敛。 I-ADMM的设计使得不精确迭代的准确性保留了精确迭代的全局收敛速率,从而在测试问题中提供了更好的数值性能。

Convergence rates are established for an inexact accelerated alternating direction method of multipliers (I-ADMM) for general separable convex optimization with a linear constraint. Both ergodic and non-ergodic iterates are analyzed. Relative to the iteration number k, the convergence rate is O(1/k) in a convex setting and O(1/k^2) in a strongly convex setting. When an error bound condition holds, the algorithm is 2-step linearly convergent. The I-ADMM is designed so that the accuracy of the inexact iteration preserves the global convergence rates of the exact iteration, leading to better numerical performance in the test problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源