论文标题
林格尔的猜想证明
A proof of Ringel's Conjecture
论文作者
论文摘要
一个典型的分解问题询问某些图$ g $的边缘是否可以分为另一个图$ h $的不相交副本。 1963年林德尔(Ringel)提出的这是该地区最古老,最著名的猜想之一,它涉及将完整的图分解为树的边缘二偶副本。它说,任何带有$ n $ edges的树都包装$ 2N+1 $ timper toteral Graph $ k_ {2n+1} $。在本文中,我们证明了大型$ n $的猜想。
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of complete graphs into edge-disjoint copies of a tree. It says that any tree with $n$ edges packs $2n+1$ times into the complete graph $K_{2n+1}$. In this paper, we prove this conjecture for large $n$.