论文标题
湍流的渗透性不稳定和恒星形成云的碎片
A Turbulent-Entropic Instability and the Fragmentation of Star-Forming Clouds
论文作者
论文摘要
星际云中超音速湍流的动能会因冲击和随后的线辐射中的耗散而进行冷却。因此,云易受由特定熵控制的冷凝过程。以类似于热力学熵的形式,超音速湍流的熵与平均湍流速度和尺寸尺度的乘积对数成正比。我们得出了在球形自我散发云中熵不稳定性增长的分散关系,并发现存在临界最大耗散时间尺度,大约等于交叉时间,从而允许碎裂和随后的星形形成。但是,湍流能量损失的时间尺度可能会较短或更长,例如快速热冷却或机械能的注入。不同恒星形成区域的能量损失的时间尺度差异可能会导致结果差异,例如在初始质量函数中。
The kinetic energy of supersonic turbulence within interstellar clouds is subject to cooling by dissipation in shocks and subsequent line radiation. The clouds are therefore susceptible to a condensation process controlled by the specific entropy. In a form analogous to the thermodynamic entropy, the entropy for supersonic turbulence is proportional to the log of the product of the mean turbulent velocity and the size scale. We derive a dispersion relation for the growth of entropic instabilities in a spherical self-gravitating cloud and find that there is a critical maximum dissipation time scale, about equal to the crossing time, that allows for fragmentation and subsequent star formation. However, the time scale for the loss of turbulent energy may be shorter or longer, for example with rapid thermal cooling or the injection of mechanical energy. Differences in the time scale for energy loss in different star-forming regions may result in differences in the outcome, for example, in the initial mass function.