论文标题

耦合张量完成的统一框架

A Unified Framework for Coupled Tensor Completion

论文作者

Huang, Huyan, Liu, Yipeng, Zhu, Ce

论文摘要

耦合张量分解通过结合来自潜在耦合因子的先验知识来揭示关节数据结构。张量环(TR)分解在具有不同模式属性的张量的排列下不变,从而确保了分解因子和模式属性的均匀性。 TR具有强大的表达能力,并在某些多维数据处理应用程序中取得了成功。为了让耦合张量互相帮助以进行缺少的组件估计,在本文中,我们通过共享潜在因素的一部分来利用TR进行耦合完成。耦合TR完成的优化模型是通过新颖的Frobenius Norm开发的。它通过块坐标下降算法解决,该算法有效地解决了由采样模式引起的一系列二次问题。与其他基于核标准的方法相比,该优化模型的多余风险显示了理论性能的提高。在合成数据的数值实验上验证了所提出的方法,对现实世界数据的实验结果证明了其优于最新方法的恢复准确性。

Coupled tensor decomposition reveals the joint data structure by incorporating priori knowledge that come from the latent coupled factors. The tensor ring (TR) decomposition is invariant under the permutation of tensors with different mode properties, which ensures the uniformity of decomposed factors and mode attributes. The TR has powerful expression ability and achieves success in some multi-dimensional data processing applications. To let coupled tensors help each other for missing component estimation, in this paper we utilize TR for coupled completion by sharing parts of the latent factors. The optimization model for coupled TR completion is developed with a novel Frobenius norm. It is solved by the block coordinate descent algorithm which efficiently solves a series of quadratic problems resulted from sampling pattern. The excess risk bound for this optimization model shows the theoretical performance enhancement in comparison with other coupled nuclear norm based methods. The proposed method is validated on numerical experiments on synthetic data, and experimental results on real-world data demonstrate its superiority over the state-of-the-art methods in terms of recovery accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源