论文标题

Kostant的分区功能和魔术多重杂耍序列

Kostant's partition function and magic multiplex juggling sequences

论文作者

Benedetti, Carolina, Hanusa, Christopher R. H., Harris, Pamela E., Morales, Alejandro H., Simpson, Anthony

论文摘要

Kostant的分区函数是一个矢量分区函数,它计算出表达Lie代数$ \ Mathfrak {G} $的重量的方式数量,作为$ \ Mathfrak {G} $的正根的非负积分线性组合。多路复用杂耍序列是杂耍序列的概括,该序列指定了球的初始和终端配置,并允许在任何特定离散高度下进行多个球。魔术多路复用杂耍序列进一步推广到包括魔术球,当它们在相同高度相遇时,它们会用标准球取消。在本文中,我们建立了谎言代数的积极根部和在杂耍序列期间抛出的组合等效性。这提供了一个杂耍框架来计算Kostant的分区功能,以及一个分区功能框架来计算杂耍序列的数量。从这个等价中,我们提供了将此工作与多面体,POSET,阳性和权重多重性连接起来的广泛后果和应用。

Kostant's partition function is a vector partition function that counts the number of ways one can express a weight of a Lie algebra $\mathfrak{g}$ as a nonnegative integral linear combination of the positive roots of $\mathfrak{g}$. Multiplex juggling sequences are generalizations of juggling sequences that specify an initial and terminal configuration of balls and allow for multiple balls at any particular discrete height. Magic multiplex juggling sequences generalize further to include magic balls, which cancel with standard balls when they meet at the same height. In this paper, we establish a combinatorial equivalence between positive roots of a Lie algebra and throws during a juggling sequence. This provides a juggling framework to calculate Kostant's partition functions, and a partition function framework to compute the number of juggling sequences. From this equivalence we provide a broad range of consequences and applications connecting this work to polytopes, posets, positroids, and weight multiplicities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源