论文标题

原子碳,氮和氧气中的氧气禁止排放线C/2016 R2(Pan-Starrs)

Atomic carbon, nitrogen, and oxygen forbidden emission lines in the water-poor comet C/2016 R2 (Pan-STARRS)

论文作者

Raghuram, S., Hutsemékers, D., Opitom, C., Jehin, E., Bhardwaj, A., Manfroid, J.

论文摘要

n $ _2 $以及共同富裕和耗水的彗星C/2016 R2(Pan-Starrs)(以下简称“ C/2016 R2”)是详细的光谱分析的独特彗星。我们旨在探索在这种特殊组成的昏迷中,产生不同的亚稳态状态和禁止排放的父物种的相关光化学。我们使用欧洲南方天文台(ESO)的乌维斯光谱仪(ESO)非常大的望远镜(VLT)重新分析了2018年2月获得的彗星C/2016 R2的高分辨率光谱。当该彗星的光谱中观察到[CI],[Ni]和[OI]的各种禁止的原子发射线,当时是在该彗星的2.8 au中从太阳中。在几个化学发射模型的框架中研究了观察到的禁止发射强度比。该模型计算表明,Co $ _2 $是C/2016 R2昏迷中原子氧绿色和红色双重排放的主要来源(而对于大多数彗星来说,通常是h $ _2 $ o),而鉴定,CO和N $ _2 $分别管理原子碳和Nitrogen的排放。与观测值相比,我们建模的氧绿色与红色双峰和碳与氮的发射比的较高。这些差异可能是由于与光子横截面或未知生产/损失源相关的不确定性所致。当我们考虑相对于CO生产率的O $ _2 $丰度,生产率为30 \%时,我们建模的氧绿色与红色双峰发射率接近观察结果。尽管其辐射寿命很重要($ \ sim $ 10 hrs),但碰撞淬火并不是N($^2 $ d)的重大损失过程。因此,观察到的[ni]双重发射比([Ni] 5198/5200)为1.22,比因子{1.4}小于陆地测量,主要是由于n($^2 $ d)的特征辐射衰减。

The N$_2$ and CO-rich and water-depleted comet C/2016 R2 (Pan-STARRS) (hereafter `C/2016 R2') is a unique comet for detailed spectroscopic analysis. We aim to explore the associated photochemistry of parent species, which produces different metastable states and forbidden emissions, in this cometary coma of peculiar composition. We re-analyzed the high-resolution spectra of comet C/2016 R2, which were obtained in February 2018, using the UVES spectrograph of the European Southern Observatory (ESO) Very Large Telescope (VLT). Various forbidden atomic emission lines of [CI], [NI], and [OI] were observed in the optical spectrum of this comet when it was at 2.8 au from the Sun. The observed forbidden emission intensity ratios are studied in the framework of a couple-chemistry emission model. The model calculations show that CO$_2$ is the major source of both atomic oxygen green and red-doublet emissions in the coma of C/2016 R2 (while for most comets it is generally H$_2$O), whereas, CO and N$_2$ govern the atomic carbon and nitrogen emissions, respectively. Our modelled oxygen green to red-doublet and carbon to nitrogen emission ratios are higher by a factor {of 3}, when compared to the observations. These discrepancies can be due to uncertainties associated with photon cross sections or unknown production/loss sources. Our modelled oxygen green to red-doublet emission ratio is close to the observations, when we consider an O$_2$ abundance with a production rate of 30\% relative to the CO production rate. The collisional quenching is not a significant loss process for N($^2$D) though its radiative lifetime is significant ($\sim$10 hrs). Hence, the observed [NI] doublet-emission ratio ([NI] 5198/5200) of 1.22, which is smaller than the terrestrial measurement by a factor {1.4}, is mainly due to the characteristic radiative decay of N($^2$D).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源