论文标题

一个复杂的网络方法,可以找到恐怖组织的潜在集群

A Complex Networks Approach to Find Latent Clusters of Terrorist Groups

论文作者

Campedelli, Gian Maria, Cruickshank, Iain, Carley, Kathleen M.

论文摘要

鉴于参与恐怖行动的参与者和团体的极端异质性,调查和评估其特征对于提取相关信息并增强其行为知识至关重要。目前的工作将寻求通过复杂的网络方法来实现这一目标。这种方法将允许使用有关其操作特征的信息找到类似恐怖组织的潜在集群。具体而言,使用恐怖袭击的开放访问数据发生在1997年至2016年,我们建立了一个多目标网络,其中包括恐怖组织以及有关战术,武器,目标,活跃地区的相关信息。我们提出了一种用于集群形成的新型算法,该算法扩大了我们较早的工作,该工作仅通过应用von Neumann熵进行模式加权,仅使用高尔的相似性系数。将这种新颖的方法与我们以前的基于高尔的方法和一种仅关注群体意识形态的启发式聚类技术进行了比较。比较分析表明,基于熵的方法倾向于可靠地反映基于基线的方法自然出现的数据的结构。此外,它在恐怖群体的行为和意识形态特征方面提供了有趣的结果。我们此外表明,基于意识形态的程序倾向于扭曲或隐藏现有模式。在主要的统计结果中,我们的工作表明,属于相反意识形态的群体可以共享非常普遍的行为,并且伊斯兰/圣战组织群体对其他行为具有独特的行为特征。还讨论了限制和潜在的工作方向,引入了基于动态熵框架的概念。

Given the extreme heterogeneity of actors and groups participating in terrorist actions, investigating and assessing their characteristics can be important to extract relevant information and enhance the knowledge on their behaviors. The present work will seek to achieve this goal via a complex networks approach. This approach will allow finding latent clusters of similar terror groups using information on their operational characteristics. Specifically, using open access data of terrorist attacks occurred worldwide from 1997 to 2016, we build a multi-partite network that includes terrorist groups and related information on tactics, weapons, targets, active regions. We propose a novel algorithm for cluster formation that expands our earlier work that solely used Gower's coefficient of similarity via the application of Von Neumann entropy for mode-weighting. This novel approach is compared with our previous Gower-based method and a heuristic clustering technique that only focuses on groups' ideologies. The comparative analysis demonstrates that the entropy-based approach tends to reliably reflect the structure of the data that naturally emerges from the baseline Gower-based method. Additionally, it provides interesting results in terms of behavioral and ideological characteristics of terrorist groups. We furthermore show that the ideology-based procedure tends to distort or hide existing patterns. Among the main statistical results, our work reveals that groups belonging to opposite ideologies can share very common behaviors and that Islamist/jihadist groups hold peculiar behavioral characteristics with respect to the others. Limitations and potential work directions are also discussed, introducing the idea of a dynamic entropy-based framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源