论文标题

反例:无尺度的网络图,具有不变直径和密度特征

Counterexample: scale-free networked graphs with invariable diameter and density feature

论文作者

Ma, Fei, Wang, Xiaomin, Wang, Ping

论文摘要

在这里,我们提出了一类无尺度网络$ g(t; m)$具有一些有趣的属性,所有理论模型在现有文献中都无法同时保留,包括(i)平均度$ \ langle k \ rangle $ rangle $不再是大小的限制,但这些范围不再是imbim limition,而是,这些范围不再是impains of light of the Impars,而这些范围不再是impare of lightim的限制。这些网络的$γ$精确计算出等于$ 2 $的(iii)直径$ d $都是模型增长过程中的不变。尽管我们的模型具有相当于零的聚类系数的确定性结构,但我们也许能够使用一些合理的方法基于原始网络获得具有非零聚类系数的各种候选,例如,在将三个重要属性保持在上面的三个重要属性的前提下随机添加了一些新的边缘。此外,我们研究网络上的陷阱问题(t; m)$,然后获得封闭形式的解决方案,意味着击中时间$ \ langle \ mathcal {h} \ rangle_ {t} $。与以前的其他模型相反,我们的结果表明了一个意外的现象,即$ \ langle \ mathcal {h} \ rangle_ {t} $的分析价值大约接近网络数量$ g(t; m)$的网络数量的对数。从理论的角度来看,这里考虑的这些网络模型可以被视为大多数已发表模型遵守当前研究中遵守幂律分布的反例。

Here, we propose a class of scale-free networks $G(t;m)$ with some intriguing properties, which can not be simultaneously held by all the theoretical models with power-law degree distribution in the existing literature, including (i) average degrees $\langle k\rangle$ of all the generated networks are no longer a constant in the limit of large graph size, implying that they are not sparse but dense, (ii) power-law parameters $γ$ of these networks are precisely calculated equal to $2$, as well (iii) their diameters $D$ are all an invariant in the growth process of models. While our models have deterministic structure with clustering coefficients equivalent to zero, we might be able to obtain various candidates with nonzero clustering coefficient based on original networks using some reasonable approaches, for instance, randomly adding some new edges under the premise of keeping the three important properties above unchanged. In addition, we study trapping problem on networks $G(t;m)$ and then obtain closed-form solution to mean hitting time $\langle \mathcal{H}\rangle_{t}$. As opposed to other previous models, our results show an unexpected phenomenon that the analytic value for $\langle \mathcal{H}\rangle_{t}$ is approximately close to the logarithm of vertex number of networks $G(t;m)$. From the theoretical point of view, these networked models considered here can be thought of as counterexamples for most of the published models obeying power-law distribution in current study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源