论文标题

椭圆形$ l $ functions曲折的小代数中心值

Small Algebraic Central Values of Twists of Elliptic $L$-Functions

论文作者

Kisilevsky, Hershy, Nam, Jungbae

论文摘要

我们考虑对Dirichlet字符的椭圆曲线$ e/\ mathbb {q} $的$ l $ function twists twists twists twists的小零代数中心值的启发式预测。我们为这些预测和它们的后果提供了计算证据,以与$ e/\ mathbb {q}相关的brauer-siegel定理的实例扩展到所选的固定度循环扩展的家庭。

We consider heuristic predictions for small non-zero algebraic central values of twists of the $L$-function of an elliptic curve $E/\mathbb{Q}$ by Dirichlet characters. We provide computational evidence for these predictions and consequences of them for instances of an analogue of the Brauer-Siegel theorem associated to $E/\mathbb{Q}$ extended to chosen families of cyclic extensions of fixed degree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源