论文标题

对称的跳过连接WASSERSTEIN GAN用于高分辨率面部图像

Symmetric Skip Connection Wasserstein GAN for High-Resolution Facial Image Inpainting

论文作者

Jam, Jireh, Kendrick, Connah, Drouard, Vincent, Walker, Kevin, Hsu, Gee-Sern, Yap, Moi Hoon

论文摘要

最先进的面部图像介绍方法取得了令人鼓舞的结果,但面对现实主义的保存仍然是一个挑战。这是由于限制造成的。保存边缘和模糊文物的失败。为了克服这些局限性,我们提出了对称的跳过连接Wasserstein生成对抗网络(S-WGAN),以用于高分辨率的面部图像。该体系结构是带有卷积块的编码器,由跳过连接链接。编码器是一种特征提取器,可捕获输入图像的数据抽象,以学习从输入(二进制蒙版映像)到地面真相的端到端映射。解码器使用学习的抽象来重建图像。通过跳过连接,S-Wgan将图像详细信息传输到解码器。此外,我们提出了沃斯坦(Wasserstein)感知损失函数,以保留颜色并在重建图像上保持现实主义。我们评估了Celeba-HQ数据集上的方法和最新方法。我们的结果表明,当与其他方法进行比较时,S-WGAN会产生更清晰,更现实的图像。定量措施表明,我们提出的S-WGAN达到了最佳结构相似性指数度量(SSIM)为0.94。

The state-of-the-art facial image inpainting methods achieved promising results but face realism preservation remains a challenge. This is due to limitations such as; failures in preserving edges and blurry artefacts. To overcome these limitations, we propose a Symmetric Skip Connection Wasserstein Generative Adversarial Network (S-WGAN) for high-resolution facial image inpainting. The architecture is an encoder-decoder with convolutional blocks, linked by skip connections. The encoder is a feature extractor that captures data abstractions of an input image to learn an end-to-end mapping from an input (binary masked image) to the ground-truth. The decoder uses learned abstractions to reconstruct the image. With skip connections, S-WGAN transfers image details to the decoder. Additionally, we propose a Wasserstein-Perceptual loss function to preserve colour and maintain realism on a reconstructed image. We evaluate our method and the state-of-the-art methods on CelebA-HQ dataset. Our results show S-WGAN produces sharper and more realistic images when visually compared with other methods. The quantitative measures show our proposed S-WGAN achieves the best Structure Similarity Index Measure (SSIM) of 0.94.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源