论文标题
梯度流式公式和二阶数值方法通过平均曲率和触点动力学在粗糙表面上进行运动
Gradient flow formulation and second order numerical method for motion by mean curvature and contact line dynamics on rough surface
论文作者
论文摘要
我们研究了在没有惯性和粘性应力效应的情况下,液滴在倾斜的粗糙表面上移动的动力学。在这种情况下,就湿区和毛细管表面而言,液滴的动力学是纯粹的几何运动。使用单个图表示,我们将这种几何运动解释为希尔伯特歧管上的梯度流。我们提出了无条件稳定的第一/二阶数值方案,以模拟液滴的这种几何运动,该几何运动是通过平均曲率与移动接触线结合的平均曲率进行描述的。这些方案基于(i)显式移动边界,该界限将接触线和毛细管表面的动态更新解次,(ii)一种用于移动网格的半拉格兰吉亚方法,(iii)使用非线性椭圆形求解器的预测式 - 校正方法提高到第二阶级别的准确性。对于数值方案中具有连续空间变量的准静态动力学的情况,我们证明了第一/二阶数值方案的稳定性和收敛性。为了证明拟议方案的准确性和长期验证,构建并与精确的固定动力学相比,通过despationalized Insportial-alge-alge-algebraice Systele(DAES)等方程(dae)(DA DAES),构建了几个具有挑战性的计算示例 - 包括呼吸液滴,滴滴的液滴以及与准确的静态动力学相比,构建并与准确的静态动力学相比,构建了和准静态的kelvin吊坠。
We study the dynamics of a droplet moving on an inclined rough surface in the absence of inertial and viscous stress effects. In this case, the dynamics of the droplet is a purely geometric motion in terms of the wetting domain and the capillary surface. Using a single graph representation, we interpret this geometric motion as a gradient flow on a Hilbert manifold. We propose unconditionally stable first/second order numerical schemes to simulate this geometric motion of the droplet, which is described using motion by mean curvature coupled with moving contact lines. The schemes are based on (i) explicit moving boundaries, which decouple the dynamic updates of the contact lines and the capillary surface, (ii) a semi-Lagrangian method on moving grids and (iii) a predictor-corrector method with a nonlinear elliptic solver upto second order accuracy. For the case of quasi-static dynamics with continuous spatial variable in the numerical schemes, we prove the stability and convergence of the first/second order numerical schemes. To demonstrate the accuracy and long-time validation of the proposed schemes, several challenging computational examples - including breathing droplets, droplets on inhomogeneous rough surfaces and quasi-static Kelvin pendant droplets - are constructed and compared with exact solutions to quasi-static dynamics obtained by desingularized differential-algebraic system of equations (DAEs).