论文标题
GridMask数据增强
GridMask Data Augmentation
论文作者
论文摘要
我们在本文中提出了一种新型的数据增强方法“ GridMask”。它利用删除信息来实现最新的结果,从而完成了各种计算机视觉任务。我们分析信息删除的要求。然后,我们显示出删除算法的现有信息的局限性,并提出了我们的结构化方法,这很简单却非常有效。它基于输入图像区域的删除。我们的广泛实验表明,我们的方法的表现优于最新的通道,由于使用强化学习来找到最佳策略,因此计算更昂贵。在ImageNet数据集中,可COCO2017对象检测以及用于语义细分的CityScapes数据集上,我们的方法都尤其改善了基线的性能。广泛的实验表明了新方法的有效性和普遍性。
We propose a novel data augmentation method `GridMask' in this paper. It utilizes information removal to achieve state-of-the-art results in a variety of computer vision tasks. We analyze the requirement of information dropping. Then we show limitation of existing information dropping algorithms and propose our structured method, which is simple and yet very effective. It is based on the deletion of regions of the input image. Our extensive experiments show that our method outperforms the latest AutoAugment, which is way more computationally expensive due to the use of reinforcement learning to find the best policies. On the ImageNet dataset for recognition, COCO2017 object detection, and on Cityscapes dataset for semantic segmentation, our method all notably improves performance over baselines. The extensive experiments manifest the effectiveness and generality of the new method.