论文标题

校准机械电生理模型时考虑差异

Considering discrepancy when calibrating a mechanistic electrophysiology model

论文作者

Lei, Chon Lok, Ghosh, Sanmitra, Whittaker, Dominic G., Aboelkassem, Yasser, Beattie, Kylie A., Cantwell, Chris D., Delhaas, Tammo, Houston, Charles, Novaes, Gustavo Montes, Panfilov, Alexander V., Pathmanathan, Pras, Riabiz, Marina, Santos, Rodrigo Weber dos, Walmsley, John, Worden, Keith, Mirams, Gary R., Wilkinson, Richard D.

论文摘要

不确定性定量(UQ)是使用数学模型和仿真来做出决策的重要步骤。心脏仿真领域已开始探索并采用UQ方法来表征模型输入中的不确定性以及如何传播到输出或预测。从这个角度来看,我们将注意力集中在我们的预测中的不确定性 - 模型结构或方程本身的不确定性中。不完美模型与现实之间的差异称为模型差异,我们通常不确定这种差异的大小和后果。在这里,我们提供了两个示例,说明在离子通道和动作电位尺度上校准模型时差异的后果。此外,我们在使用高斯流程(GPS)和自动回应 - 运动平均(ARMA)模型对离子通道模型进行校准和验证离子通道模型时,试图考虑这种差异,然后突出显示每种方法的优势和缺点。最后,为将来的工作提供了建议和调查。

Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterise uncertainty in model inputs and how that propagates through to outputs or predictions. In this perspective piece we draw attention to an important and under-addressed source of uncertainty in our predictions -- that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes (GPs) and autoregressive-moving-average (ARMA) models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源