论文标题
高保真综合,具有分离的表示
High-Fidelity Synthesis with Disentangled Representation
论文作者
论文摘要
在没有监督的情况下,学习分解数据是提高生成模型的解释性的重要一步。尽管最近的表示形式学习取得了进步,但现有的方法通常会遭受代表性学习与发电绩效之间的权衡,即提高发电质量牺牲的分离性能)。我们提出了一个信息依据生成的对抗网络(ID-GAN),这是一个简单而通用的框架,可以轻松地结合现有的最新模型,以用于分离学习和高保真综合。我们的方法使用基于VAE的模型学习了分离的表示形式,并将学习的表示形式提炼出与单独的基于GAN的发电机的其他滋扰变量,以进行高保真合成。为了确保两种生成模型都对齐以呈现相同的生成因素,我们进一步限制了GAN发电机以最大程度地提高所学潜在代码和输出之间的相互信息。尽管很简单,但我们表明,所提出的方法是非常有效的,可以使用分离的表示,可与最先进的方法达到可比的图像产生质量。我们还表明,提出的分解导致了有效且稳定的模型设计,我们首次使用删除表示的表示,我们首次展示了光真实的高分辨率图像合成结果(1024x1024像素)。
Learning disentangled representation of data without supervision is an important step towards improving the interpretability of generative models. Despite recent advances in disentangled representation learning, existing approaches often suffer from the trade-off between representation learning and generation performance i.e. improving generation quality sacrifices disentanglement performance). We propose an Information-Distillation Generative Adversarial Network (ID-GAN), a simple yet generic framework that easily incorporates the existing state-of-the-art models for both disentanglement learning and high-fidelity synthesis. Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis. To ensure that both generative models are aligned to render the same generative factors, we further constrain the GAN generator to maximize the mutual information between the learned latent code and the output. Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation. We also show that the proposed decomposition leads to an efficient and stable model design, and we demonstrate photo-realistic high-resolution image synthesis results (1024x1024 pixels) for the first time using the disentangled representations.