论文标题

针对各种混合算法优化的量子古典云平台

A quantum-classical cloud platform optimized for variational hybrid algorithms

论文作者

Karalekas, Peter J., Tezak, Nikolas A., Peterson, Eric C., Ryan, Colm A., da Silva, Marcus P., Smith, Robert S.

论文摘要

为了支持量子计算的近期应用,新的计算范式已经出现了 - 量子计算机(QPU)通过共享云基础架构与经典计算机(CPU)一起起作用。在这项工作中,我们列举了量子古典云平台的建筑要求,并提出了一个基准测试其运行时性能的框架。此外,我们浏览了两个平台级增强功能,参数汇编和主动量子重置,它们专门优化了量子古典体系结构,以支持变异混合算法(VHAS),这是近端量子硬件的最有希望的应用。最后,我们表明,将这两个功能集成到Rigetti量子云服务(QCS)平台中,可以对控制算法运行时的潜伏期进行大量改进。

In order to support near-term applications of quantum computing, a new compute paradigm has emerged--the quantum-classical cloud--in which quantum computers (QPUs) work in tandem with classical computers (CPUs) via a shared cloud infrastructure. In this work, we enumerate the architectural requirements of a quantum-classical cloud platform, and present a framework for benchmarking its runtime performance. In addition, we walk through two platform-level enhancements, parametric compilation and active qubit reset, that specifically optimize a quantum-classical architecture to support variational hybrid algorithms (VHAs), the most promising applications of near-term quantum hardware. Finally, we show that integrating these two features into the Rigetti Quantum Cloud Services (QCS) platform results in considerable improvements to the latencies that govern algorithm runtime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源