论文标题

适用于毕业生方程式的自适应不连续的彼得 - 盖尔金方法

An adaptive discontinuous Petrov-Galerkin method for the Grad-Shafranov equation

论文作者

Peng, Zhichao, Tang, Qi, Tang, Xian-Zhu

论文摘要

在这项工作中,我们建议并为非线性毕业生 - shafranov方程提出并开发一种任意阶段的自适应不连续的彼得 - 加盖尔(DPG)方法。根据最小残留方法给出了该方程的DPG方案的超视公式。与常规的有限元方法相比,DPG方案的优点是提供更准确的梯度,这对于Grad-Shafranov方程的数值解决方案是需要的。使用自适应网格细化方法增强了数值方案,并开发了基于剩余方法中的剩余标准,以实现动态优化。探索了生成系统的非线性求解器,并发现使用安德森加速度的PICARD迭代可以有效地解决该系统。最后,提出的算法使用域分解方法在MFEM上并行实施,我们的实现是一般的,支持了任意的准确性和一般网格。提出了数值结果以证明所提出算法的效率和准确性。

In this work, we propose and develop an arbitrary-order adaptive discontinuous Petrov-Galerkin (DPG) method for the nonlinear Grad-Shafranov equation. An ultraweak formulation of the DPG scheme for the equation is given based on a minimal residual method. The DPG scheme has the advantage of providing more accurate gradients compared to conventional finite element methods, which is desired for numerical solutions to the Grad-Shafranov equation. The numerical scheme is augmented with an adaptive mesh refinement approach, and a criterion based on the residual norm in the minimal residual method is developed to achieve dynamic refinement. Nonlinear solvers for the resulting system are explored and a Picard iteration with Anderson acceleration is found to be efficient to solve the system. Finally, the proposed algorithm is implemented in parallel on MFEM using a domain-decomposition approach, and our implementation is general, supporting arbitrary order of accuracy and general meshes. Numerical results are presented to demonstrate the efficiency and accuracy of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源