论文标题
用增量标签和自适应补偿重新思考课程学习
Rethinking Curriculum Learning with Incremental Labels and Adaptive Compensation
论文作者
论文摘要
像人类一样,当样本以有意义的顺序或课程组织组织和引入时,深层网络被证明可以学习得更好。传统的课程学习方案以难度顺序介绍样本。这迫使模型开始从可用数据的一部分开始学习,同时添加了评估样品难度的外部开销。在这项工作中,我们建议使用增量标签和自适应补偿(LILAC)学习,这是一种两阶段的方法,可逐步增加唯一的输出标签的数量,而不是样本的难度,同时在整个培训过程中始终如一地使用整个数据集。在第一阶段的增量标签引入中,我们将数据分配到互斥的子集中,一个子集包含一个基于地面真相标签的子集,另一个包含附加到伪标签的其余数据。在整个训练过程中,我们以固定的增量递归揭示了看不见的地面真相标签,直到模型已知所有标签。在第二阶段的自适应补偿中,我们使用先前错误分类的样品的目标向量优化损失函数。此类样品的目标向量被修改为更平滑的分布,以帮助模型更好地学习。在跨三个标准图像基准(CIFAR-10,CIFAR-100和STL-10)进行评估时,我们表明淡紫色的表现优于所有可比基线。此外,我们详细介绍了将新标签引入模型以及使用平滑目标向量的影响的重要性。
Like humans, deep networks have been shown to learn better when samples are organized and introduced in a meaningful order or curriculum. Conventional curriculum learning schemes introduce samples in their order of difficulty. This forces models to begin learning from a subset of the available data while adding the external overhead of evaluating the difficulty of samples. In this work, we propose Learning with Incremental Labels and Adaptive Compensation (LILAC), a two-phase method that incrementally increases the number of unique output labels rather than the difficulty of samples while consistently using the entire dataset throughout training. In the first phase, Incremental Label Introduction, we partition data into mutually exclusive subsets, one that contains a subset of the ground-truth labels and another that contains the remaining data attached to a pseudo-label. Throughout the training process, we recursively reveal unseen ground-truth labels in fixed increments until all the labels are known to the model. In the second phase, Adaptive Compensation, we optimize the loss function using altered target vectors of previously misclassified samples. The target vectors of such samples are modified to a smoother distribution to help models learn better. On evaluating across three standard image benchmarks, CIFAR-10, CIFAR-100, and STL-10, we show that LILAC outperforms all comparable baselines. Further, we detail the importance of pacing the introduction of new labels to a model as well as the impact of using a smooth target vector.