论文标题

多平面肺结节检测的深度卷积神经网络:小结节识别的改进

Deep convolutional neural networks for multi-planar lung nodule detection: improvement in small nodule identification

论文作者

Zheng, Sunyi, Cornelissen, Ludo J., Cui, Xiaonan, Jing, Xueping, Veldhuis, Raymond N. J., Oudkerk, Matthijs, van Ooijen, Peter M. A.

论文摘要

目的:在临床实践中,放射科医生很容易忽略小肺结节。该论文旨在为小肺结节提供有效,准确的检测系统,同时为大结节保持良好的性能。方法:我们使用卷积神经网络提出了一个多平面检测系统。二-D卷积神经网络模型U-NET ++通过轴向,冠状和矢状切片训练,用于候选检测任务。组合了三个不同平面的所有可能的结节候选物。为了减少假阳性,我们应用了3-D多尺度密集的卷积神经网络来有效删除假阳性候选者。我们使用公共LIDC-IDRI数据集,其中包括888个CT扫描,其中包括由四位放射科医生注释的1186个结节。结果:经过十倍的交叉验证,我们提出的系统以1.0假阳性/扫描达到94.2%的灵敏度,而灵敏度为96.0%,而2.0误报/扫描。尽管很难检测到小结节(即<6 mm),但我们设计的CAD系统的灵敏度为93.4%(95.0%)这些小结节的敏感性为1.0(2.0)假阳性/扫描。在结节候选阶段,结果表明,与使用单个平面相比,多平面方法能够检测更多的结节。结论:我们的方法不仅可以针对小结节,而且可以实现该数据集中的大型病变的良好性能。这证明了我们开发的CAD系统在肺结节检测中的有效性和效率。意义:拟议的系统可以为放射科医生提供早期发现肺癌的支持。

Objective: In clinical practice, small lung nodules can be easily overlooked by radiologists. The paper aims to provide an efficient and accurate detection system for small lung nodules while keeping good performance for large nodules. Methods: We propose a multi-planar detection system using convolutional neural networks. The 2-D convolutional neural network model, U-net++, was trained by axial, coronal, and sagittal slices for the candidate detection task. All possible nodule candidates from the three different planes are combined. For false positive reduction, we apply 3-D multi-scale dense convolutional neural networks to efficiently remove false positive candidates. We use the public LIDC-IDRI dataset which includes 888 CT scans with 1186 nodules annotated by four radiologists. Results: After ten-fold cross-validation, our proposed system achieves a sensitivity of 94.2% with 1.0 false positive/scan and a sensitivity of 96.0% with 2.0 false positives/scan. Although it is difficult to detect small nodules (i.e. < 6 mm), our designed CAD system reaches a sensitivity of 93.4% (95.0%) of these small nodules at an overall false positive rate of 1.0 (2.0) false positives/scan. At the nodule candidate detection stage, results show that a multi-planar method is capable to detect more nodules compared to using a single plane. Conclusion: Our approach achieves good performance not only for small nodules, but also for large lesions on this dataset. This demonstrates the effectiveness and efficiency of our developed CAD system for lung nodule detection. Significance: The proposed system could provide support for radiologists on early detection of lung cancer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源