论文标题

基本团体的非标准开莉自动表示

Nonstandard Cayley automatic representations of fundamental groups

论文作者

Berdinsky, Dmitry, Kruengthomya, Prohrak

论文摘要

我们构建了一个新的Cayley自动表示的新家族,$ \ Mathbb {Z}^n \ rtimes_a \ Mathbb {Z} $,而普通子组$ \ MATHBB {z}^n $都不是其环状组件的每个均可识别的autoMatemon Automate venite automatizable。对于$ n = 2 $,我们从$ \ mathrm {gl}(2,\ mathbb {z})$中描述一个与这些表示相对应的矩阵。我们的动机是由这些群体的所有可能的Cayley自动表示的表征的问题。

We construct a new family of Cayley automatic representations of semidirect products $\mathbb{Z}^n \rtimes_A \mathbb{Z}$ for which none of the projections of the normal subgroup $\mathbb{Z}^n$ onto each of its cyclic components is finite automaton recognizable. For $n=2$ we describe a family of matrices from $\mathrm{GL}(2,\mathbb{Z})$ corresponding to these representations. We are motivated by a problem of characterization of all possible Cayley automatic representations of these groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源