论文标题

基于内容的深层入侵检测系统

A Content-Based Deep Intrusion Detection System

论文作者

Soltani, Mahdi, Siavoshani, Mahdi Jafari, Jahangir, Amir Hossein

论文摘要

互联网用户数量的越来越多以及Web应用程序的普遍性使得需要处理网络中非常复杂的软件和应用程序。这会导致系统中越来越多的新漏洞,并导致网络威胁的增加,尤其是零日攻击。为这些攻击生成适当的签名的成本是使用基于机器学习的方法的潜在动机。尽管有许多关于使用基于学习的方法进行攻击检测的研究,但它们通常使用提取的特征并忽略原始内容。这种方法可以减少针对基于内容的攻击(例如SQL注入,跨站点脚本(XSS)和各种病毒)的检测系统的性能。 在这项工作中,我们提出了一个称为“深度入侵检测(DID)系统”的框架,该框架在被动DNN ID的学习和检测阶段中使用了交通流的纯粹内容。为此,我们使用LSTM作为深度学习技术部署和评估了一个离线ID。由于深度学习的固有性质,它可以处理高维数据内容,因此可以发现流量的自动提取特征之间的复杂关系。为了评估提出的DID系统,我们使用CIC-IDS2017和CSE-CIC-IDS2018数据集。 CIC-IDS2017上的评估指标(例如精确度和召回)分别达到0.992美元和0.998美元,$ 0.933 $和0.923美元的CSE-CIC-IDS2018分别显示,这表明所拟议的高性能DID方法。

The growing number of Internet users and the prevalence of web applications make it necessary to deal with very complex software and applications in the network. This results in an increasing number of new vulnerabilities in the systems, and leading to an increase in cyber threats and, in particular, zero-day attacks. The cost of generating appropriate signatures for these attacks is a potential motive for using machine learning-based methodologies. Although there are many studies on using learning-based methods for attack detection, they generally use extracted features and overlook raw contents. This approach can lessen the performance of detection systems against content-based attacks like SQL injection, Cross-site Scripting (XSS), and various viruses. In this work, we propose a framework, called deep intrusion detection (DID) system, that uses the pure content of traffic flows in addition to traffic metadata in the learning and detection phases of a passive DNN IDS. To this end, we deploy and evaluate an offline IDS following the framework using LSTM as a deep learning technique. Due to the inherent nature of deep learning, it can process high dimensional data content and, accordingly, discover the sophisticated relations between the auto extracted features of the traffic. To evaluate the proposed DID system, we use the CIC-IDS2017 and CSE-CIC-IDS2018 datasets. The evaluation metrics, such as precision and recall, reach $0.992$ and $0.998$ on CIC-IDS2017, and $0.933$ and $0.923$ on CSE-CIC-IDS2018 respectively, which show the high performance of the proposed DID method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源