论文标题
图形傅立叶变换:稳定的近似
Graph Fourier Transform: A Stable Approximation
论文作者
论文摘要
在图形信号处理(GSP)中,数据依赖性由一个图表表示,该图形标记数据和边缘捕获节点之间的依赖项。该图由加权邻接矩阵$ A $表示,在GSP中,它概括了离散信号处理(DSP)移动运算符$ z^{ - 1} $。 Shift $ a $ a $(图频谱组件)对角$ a $ a $的(右)特征向量,并导致图形傅立叶基础$ f $,该$ f $ f $ f $提供了图形信号的图频谱表示。图形傅立叶基础$ f $的(矩阵矩阵的倒数是图形傅立叶变换(GFT),$ f^{ - 1} $。通常,在现实世界中,这种对角度化在数字上是不稳定的。本文开发了一种方法,可以通过解决非凸优化问题来确保其数值稳定性,同时确保其数值稳定性,以计算出准确的近似值和$ f $ f $和$ f^{ - 1} $。为了解决非凸度,我们提出了一种算法,即稳定的图形傅立叶基算法(SGFA),我们证明,该算法是指数级提高每个迭代的近似$ f $的准确性。同样,我们可以将SGFA应用于$ a^h $,因此,近似于图形移位$ a $的稳定左特征向量,并直接计算GFT。我们通过将其应用于图形转移$ A $从两个现实世界中的问题,2004年美国政治博客图和曼哈顿路线图中得出的图形$ a $来评估SGFA的质量,从而对不同SGFA参数之间的权衡进行了全面研究。我们还通过将SGFA应用于非常稀疏且非常密集的定向ERD \ H OS-Rényi图中来确认我们的结论。
In Graph Signal Processing (GSP), data dependencies are represented by a graph whose nodes label the data and the edges capture dependencies among nodes. The graph is represented by a weighted adjacency matrix $A$ that, in GSP, generalizes the Discrete Signal Processing (DSP) shift operator $z^{-1}$. The (right) eigenvectors of the shift $A$ (graph spectral components) diagonalize $A$ and lead to a graph Fourier basis $F$ that provides a graph spectral representation of the graph signal. The inverse of the (matrix of the) graph Fourier basis $F$ is the Graph Fourier transform (GFT), $F^{-1}$. Often, including in real world examples, this diagonalization is numerically unstable. This paper develops an approach to compute an accurate approximation to $F$ and $F^{-1}$, while insuring their numerical stability, by means of solving a non convex optimization problem. To address the non-convexity, we propose an algorithm, the stable graph Fourier basis algorithm (SGFA) that we prove to exponentially increase the accuracy of the approximating $F$ per iteration. Likewise, we can apply SGFA to $A^H$ and, hence, approximate the stable left eigenvectors for the graph shift $A$ and directly compute the GFT. We evaluate empirically the quality of SGFA by applying it to graph shifts $A$ drawn from two real world problems, the 2004 US political blogs graph and the Manhattan road map, carrying out a comprehensive study on tradeoffs between different SGFA parameters. We also confirm our conclusions by applying SGFA on very sparse and very dense directed Erd\H os-Rényi graphs.