论文标题
Turán数字用于HyperGraph Star Forests
Turán numbers for hypergraph star forests
论文作者
论文摘要
修复图$ f $。我们说,如果图形不包含$ f $作为子图,则图形为{\ it $ f $ -free}。 $ f $的{\ itturán编号},表示为$ \ mathrm {ex}(n,f)$,是$ n $ -vertex $ f $ f $ - free Graph中可能的最大边数。 Turán数字的研究是图理论中的一个核心问题。本文的目的是概括Lidický,Liu和Palmer的定理[{\ it Electron。特别是,我们将问题概括为三种不同研究的超图形设置,在每种情况下,我们都证明了定义我们“星际森林”的所有合理参数的渐近结果。
Fix a graph $F$. We say that a graph is {\it $F$-free} if it does not contain $F$ as a subgraph. The {\it Turán number} of $F$, denoted $\mathrm{ex}(n,F)$, is the maximum number of edges possible in an $n$-vertex $F$-free graph. The study of Turán numbers is a central problem in graph theory. The goal of this paper is to generalize a theorem of Lidický, Liu and Palmer [{\it Electron.\ J.\ of Combin.}\ {\bf 20} (2016)] that determines $\mathrm{ex}(n,F)$ for $F$ a forest of stars. In particular, we consider generalizations of the problem to three different well-studied hypergraph settings and in each case we prove an asymptotic result for all reasonable parameters defining our "star forests".