论文标题
宏观经济城市动态的哈密顿建模
Hamiltonian Modeling of Macro-Economic Urban Dynamics
论文作者
论文摘要
持续不断的快速城市化现象使人们对城市环境的发展非常重要,以改善福祉和转向更好的未来。许多研究都集中在城市的新兴特性上,导致发现尺度定律镜像,例如,社会经济指标对城市规模的依赖性。尽管缩放定律允许定义城市大小的独立社会经济指标,但只有少数努力致力于通过社会经济变量及其相互影响的城市动态演变建模。在这项工作中,我们提出了最大的熵(ME),非线性的,生成的城市模型。我们特别是在一些宏观经济变量方面写下的哈密顿功能,我们从与法国城镇相对应的真实数据中推断出其耦合参数。我们首先发现,需要在不同指标之间进行非线性依赖性,以便对它们之间的非高斯相关性进行完整的统计描述。此外,尽管各个城市的动态远非静止,但我们表明,与不同年份相对应的耦合参数非常强大。哈密顿模型的准时间传不同允许基于langevin方程的宏观经济变量时间的演变进行分析模型。尽管没有使用有关城市演变的时间信息来得出该模型,但其系统时间演变的预测准确性与使用此类信息明确推断的模型兼容。
The ongoing rapid urbanization phenomena make the understanding of the evolution of urban environments of utmost importance to improve the well-being and steer societies towards better futures. Many studies have focused on the emerging properties of cities, leading to the discovery of scaling laws mirroring, for instance, the dependence of socio-economic indicators on city sizes. Though scaling laws allow for the definition of city-size independent socio-economic indicators, only a few efforts have been devoted to the modeling of the dynamical evolution of cities as mirrored through socio-economic variables and their mutual influence. In this work, we propose a Maximum Entropy (ME), non-linear, generative model of cities. We write in particular a Hamiltonian function in terms of a few macro-economic variables, whose coupling parameters we infer from real data corresponding to French towns. We first discover that non-linear dependencies among different indicators are needed for a complete statistical description of the non-Gaussian correlations among them. Furthermore, though the dynamics of individual cities are far from being stationary, we show that the coupling parameters corresponding to different years turn out to be quite robust. The quasi time-invariance of the Hamiltonian model allows proposing an analytic model for the evolution in time of the macro-economic variables, based on the Langevin equation. Despite no temporal information about the evolution of cities has been used to derive this model, its forecast accuracy of the temporal evolution of the system is compatible to that of a model inferred using explicitly such information.