论文标题

假想二次场的Siegel零的显式上限

An explicit upper bound for Siegel zeros of imaginary quadratic fields

论文作者

Ralaivaosaona, Dimbinaina, Razakarinoro, Faratiana Brice

论文摘要

对于任何整数$ d \ geq 3 $,$ -d $是基本的判别,我们表明与真实原始角色$χ(\ cdot)=(\ frac {-d} {-d} {\ cdot})$相关的dirichlet $ l $ function在间隔$ [1-6.5/s s s s s s s s s s s s s s s s s s n Inteven $ [1-1-6.1-6.5/s s s s s s s ractiany = 1-1-6.1-1-1-6 =很积极,并不会消失。 $

For any integer $d\geq 3$ such that $-d$ is a fundamental discriminant, we show that the Dirichlet $L$-function associated with the real primitive character $χ(\cdot)=(\frac{-d}{\cdot})$ does not vanish on the positive part of the interval $[1-6.5/\sqrt{d},\ 1]. $

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源