论文标题
原子尺度旋转纹理的真实空间成像
Real-space imaging of atomic-scale spin textures at nanometer distances
论文作者
论文摘要
具有非共线自旋纹理的超薄薄膜上的自旋偏振扫描隧道显微镜(SP-STM)实验表明,共振隧道允许在高达8 nm的尖端样本距离处的真实空间中的原子尺度自旋敏感成像。在磁探针尖端的最重要原子和相对的磁体原子之间发展的自旋偏振谐振状态在扫描探针设置中增加尖端样本距离时,可以从迄今为止失去空间分辨率的现有困境中提供漏洞。通过谐振隧道记录的偏置依赖性SP-STM图像在谐振条件下显示自旋灵敏度,表明自旋极化的共振状态充当跨NM间隔真空间隙的旋转对比度的介体。在NM制度中,在技术上可行的距离,SP-STM中的谐振隧道有资格获得自旋敏感的读写技术,并在未来的Spintronic应用中具有最终的横向分辨率。
Spin-polarized scanning tunneling microscopy (SP-STM) experiments on ultrathin films with non-collinear spin textures demonstrate that resonant tunneling allows for atomic-scale spin-sensitive imaging in real space at tip-sample distances of up to 8 nm. Spin-polarized resonance states evolving between the foremost atom of a magnetic probe tip and the opposed magnetic surface atom are found to provide a loophole from the hitherto existing dilemma of losing spatial resolution when increasing the tip-sample distance in a scanning probe setup. Bias-dependent series of SP-STM images recorded via resonant tunneling reveal spin sensitivity at resonance conditions, indicating that the spin-polarized resonance states act as mediators for the spin contrast across the nm-spaced vacuum gap. With technically feasible distances in the nm regime, resonant tunneling in SP-STM qualifies for a spin-sensitive read-write technique with ultimate lateral resolution in future spintronic applications.