论文标题
$ f_n $的一组不可约合的自动形态是共同处理的
The mimimally displaced set of an irreducible automorphism of $F_N$ is co-compact
论文作者
论文摘要
我们研究了一个自由组的最小流离失所的不可替代的自动形态。我们的主要结果是在Centraliser $ c(ϕ)$的作用下,最小流离失所的不可修复的自动形态和指数增长$ ϕ $的共缝度。作为推论,我们得到了$ <xs> $在$ min(ϕ)$上的$ <xs> $的操作。最后,我们证明,生长速率的不可还原自动形态的最小位移集由单个点组成。
We study the minimally displaced set of irreducible automorphisms of a free group. Our main result is the co-compactness of the minimally displaced set of an irreducible automorphism with exponential growth $ϕ$, under the action of the centraliser $C(ϕ)$. As a corollary, we get that the same holds for the action of $<ϕ>$ on $Min(ϕ)$. Finally, we prove that the minimally displaced set of an irreducible automorphism of growth rate one is consisted of a single point.