论文标题
玻色鬼 - 玻色鬼幽灵顶点代数接纳与刚性融合的对数模块类别
Bosonic ghostbusting -- The bosonic ghost vertex algebra admits a logarithmic module category with rigid fusion
论文作者
论文摘要
等级1骨鬼顶点代数,也称为$βγ$ ghosts,Symbletic Bosons或Weyl Vertex代数,是一个既不是理性的,也不是C_2 $ cofInite的一个简单示例。我们确定一个模块类别,表示为类别$ \ MATHSCR {F} $,它满足了三个必要的条件来自保形场理论考虑:在受限双重的二元组下封闭,在融合中关闭和在模块化组对字符的作用下关闭和关闭。我们证明了这些条件的第二个,另外两个已经知道。此外,我们表明类别$ \ mathscr {f} $具有足够多的投影和注入性模块,对所有不可分解的模块进行分类,表明融合是刚性的,并计算了所有融合产品。融合产物公式证明是完美匹配先前提出的Verlinde公式,该公式是使用常规合理Verlinde公式的猜想概括计算得出的,称为标准模块形式主义。因此,尽管没有满足诸如$ C_2 $ - cofinitys之类的标准合理性假设,但骨鬼基本上表现出所有丰富的理性理论结构,但顶点代数是其受限制的二元或具有一维的完整权重0空间的同构的同构。尤其是,据作者所知,这是对数非$ C_2 $ -COFINITE顶点代数的刚性证明的第一个例子。
The rank 1 bosonic ghost vertex algebra, also known as the $βγ$ ghosts, symplectic bosons or Weyl vertex algebra, is a simple example of a conformal field theory which is neither rational, nor $C_2$-cofinite. We identify a module category, denoted category $\mathscr{F}$, which satisfies three necessary conditions coming from conformal field theory considerations: closure under restricted duals, closure under fusion and closure under the action of the modular group on characters. We prove the second of these conditions, with the other two already being known. Further, we show that category $\mathscr{F}$ has sufficiently many projective and injective modules, give a classification of all indecomposable modules, show that fusion is rigid and compute all fusion products. The fusion product formulae turn out to perfectly match a previously proposed Verlinde formula, which was computed using a conjectured generalisation of the usual rational Verlinde formula, called the standard module formalism. The bosonic ghosts therefore exhibit essentially all of the rich structure of rational theories despite satisfying none of the standard rationality assumptions such as $C_2$-cofiniteness, the vertex algebra being isomorphic to its restricted dual or having a one-dimensional conformal weight 0 space. In particular, to the best of the authors' knowledge this is the first example of a proof of rigidity for a logarithmic non-$C_2$-cofinite vertex algebra.