论文标题
在超热木星黄蜂121b的大气中检测Fe I,以及一种基于多普勒分辨光谱的新方法
Detection of Fe I in the atmosphere of the ultra-hot Jupiter WASP-121b, and a new likelihood-based approach for Doppler-resolved spectroscopy
论文作者
论文摘要
高分辨率多普勒分辨光谱已为过渡和非传输系外行星的大气打开了一个新窗口。在这里,我们介绍了VLT/UVE的观测值Wasp-121b的转运,这是一种先前发现的“超热”木星,它显示出在光学波长处的温度反转和多种物种的检测。我们使用uves的蓝色臂($ \ $ 3700-5000a)提出了初始结果,在> 8 $σ$的情况下恢复了地球大气中中立Fe的明显信号,这可以有助于(甚至完全解释)平流层中的温度反转。但是,使用标准的互相关方法,很难提取物理参数,例如温度和丰度。最近的开创性工作试图开发可能将模型直接拟合到高分辨率数据集的可能性“映射”。我们引入了一个新框架,该框架直接计算模型拟合数据的可能性,并可用于通过MCMC技术探索参数化模型大气的后验分布。我们的方法还恢复了大气的物理范围,并解释了时间和波长依赖性的不确定性。我们测量$ 3710^{+490} _ { - 510} $ k的温度,与低分辨率观测相比,高度的温度较高。我们还表明,Fe I信号与外流Fe II物理分离。但是,温度测量值高度退化,气溶胶特性。使用更复杂的大气模型检测其他物种,或将这些方法与低分辨率光谱相结合,应有助于破坏这些变性。
High-resolution Doppler-resolved spectroscopy has opened up a new window into the atmospheres of both transiting and non-transiting exoplanets. Here, we present VLT/UVES observations of a transit of WASP-121b, an 'ultra-hot' Jupiter previously found to exhibit a temperature inversion and detections of multiple species at optical wavelengths. We present initial results using the blue arm of UVES ($\approx$3700-5000A), recovering a clear signal of neutral Fe in the planet's atmosphere at >8$σ$, which could contribute to (or even fully explain) the temperature inversion in the stratosphere. However, using standard cross-correlation methods, it is difficult to extract physical parameters such as temperature and abundances. Recent pioneering efforts have sought to develop likelihood `mappings' that can be used to directly fit models to high-resolution datasets. We introduce a new framework that directly computes the likelihood of the model fit to the data, and can be used to explore the posterior distribution of parameterised model atmospheres via MCMC techniques. Our method also recovers the physical extent of the atmosphere, as well as account for time- and wavelength-dependent uncertainties. We measure a temperature of $3710^{+490}_{-510}$K, indicating a higher temperature in the upper atmosphere when compared to low-resolution observations. We also show that the Fe I signal is physically separated from the exospheric Fe II. However, the temperature measurements are highly degenerate with aerosol properties; detection of additional species, using more sophisticated atmospheric models, or combining these methods with low-resolution spectra should help break these degeneracies.