论文标题
部分观察到的系统的可预测性极限
Predictability limit of partially observed systems
论文作者
论文摘要
从金融到流行病学和网络安全的应用需要对动态现象进行准确的预测,通常只观察到这些现象。我们证明,无论采用的预测模型如何,系统的可预测性降低是时间采样的函数。我们量化了由于采样而导致的可预测性损失,并表明无法通过使用外部信号将其恢复。我们验证了代表传染病爆发,在线讨论和软件开发项目的现实世界中的理论发现的一般性。在各种预测任务上 - 预测新感染,主题在在线讨论中的普及或对加密货币项目的兴趣----可预测性无可恢复,这是对部分观察到的系统中采样,公开的基本可预测性限制的函数。
Applications from finance to epidemiology and cyber-security require accurate forecasts of dynamic phenomena, which are often only partially observed. We demonstrate that a system's predictability degrades as a function of temporal sampling, regardless of the adopted forecasting model. We quantify the loss of predictability due to sampling, and show that it cannot be recovered by using external signals. We validate the generality of our theoretical findings in real-world partially observed systems representing infectious disease outbreaks, online discussions, and software development projects. On a variety of prediction tasks---forecasting new infections, the popularity of topics in online discussions, or interest in cryptocurrency projects---predictability irrecoverably decays as a function of sampling, unveiling fundamental predictability limits in partially observed systems.