论文标题

平均曲率流的同型孤子存在的另一个证明

Another proof of the existence of homothetic solitons of the inverse mean curvature flow

论文作者

Hsu, Shu-Yu

论文摘要

我们将提供一个新的证明,证明存在倒数平均曲率流(cf。\ cite \ cite {dlw})中的非压缩同型孤子,$ \ mathbb {r}^n \ times \ times \ times \ mathbb {r} $,$ n \ ge 2 $,$ n \ ge 2 $,$(y(y $)$(y $)$(y) $ x \ in \ mathbb {r}^n $,是径向对称的坐标,$ y \ in \ mathbb {r} $。更精确地适用于任何$ \ frac {1} {n}<λ<\ frac {1} {n-1} {n-1} $和$μ<0 $,我们将提供一个新的证明,证明存在唯一的解决方案$ r(y) $ \ frac {r_ {yy}(y)}} {1+r_y(y)^2} = \ frac {n-1} {r(y)} - \ frac {1+r_y(y)^2}^2} =λ(λ(y)(r(y)-yr_yr_y(y)-yr_yr_y(y Inf the) $ r(μ)= 0 $和$ r_y(μ)= \ lim_ {y \searrowμ} r_y(y)=+\ infty $。我们还证明存在常数$ y_2> y_1> 0 $,以便任何$μ<y <y__1 $,$ r_1 $,$ r_y(y_1)= 0 $,$ r_y(y)<0 $ y_1 $> y_1 $,$ y_1 $,$ r_y {y yy} $ y_ $ y__ <y_ <y_ <y_ <y_ <y_1 $ $ r_ {yy}(y_2)= 0 $和$ r_ {yy}(y)> 0 $对于任何$ y> y_2 $。此外,$ \ lim_ {y \ to +\ infty} r(y)= 0 $和$ \ lim_ {y \ to +\ infty} yr_y(y)= 0 $。

We will give a new proof of the existence of non-compact homothetic solitons of the inverse mean curvature flow (cf. \cite{DLW}) in $\mathbb{R}^n\times \mathbb{R}$, $n\ge 2$, of the form $(r,y(r))$ or $(r(y),y)$ where $r=|x|$, $x\in\mathbb{R}^n$, is the radially symmetric coordinate and $y\in \mathbb{R}$. More precisely for any $\frac{1}{n}<λ<\frac{1}{n-1}$ and $μ<0$, we will give a new proof of the existence of a unique solution $r(y)\in C^2(μ,\infty)\cap C([μ,\infty))$ of the equation $\frac{r_{yy}(y)}{1+r_y(y)^2}=\frac{n-1}{r(y)}-\frac{1+r_y(y)^2}{λ(r(y)-yr_y(y))}$, $r(y)>0$, in $(μ,\infty)$ which satisfies $r(μ)=0$ and $r_y(μ)=\lim_{y\searrowμ}r_y(y)=+\infty$. We also prove that there exist constants $y_2>y_1>0$ such that $r_y(y)>0$ for any $μ<y<y_1$, $r_y(y_1)=0$, $r_y(y)<0$ for any $y>y_1$, $r_{yy}(y)<0$ for any $μ<y<y_2$, $r_{yy}(y_2)=0$ and $r_{yy}(y)>0$ for any $y>y_2$. Moreover $\lim_{y\to +\infty}r(y)=0$ and $\lim_{y\to +\infty}yr_y(y)=0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源