论文标题
分布稳健的贝叶斯正交优化
Distributionally Robust Bayesian Quadrature Optimization
论文作者
论文摘要
贝叶斯正交优化(BQO)最大程度地提高了对已知概率分布的昂贵的黑盒整数的期望。在这项工作中,我们研究了在分布不确定性下的BQO,其中基本概率分布是未知的,除了一组有限的I.I.D.样品。鉴于固定样品集,标准的BQO方法最大化了真实预期目标的蒙特卡洛估计值。尽管蒙特卡洛的估计值是公正的,但在一组样品中,它具有很高的差异。因此可以导致虚假的目标函数。我们通过在最具对抗性分布下最大化预期目标来采用分布强劲的优化观点。特别是,我们提出了一种新型的基于后取样的算法,即为此目的,分布稳健的BQO(DRBQO)。我们证明了我们提议的框架在合成和现实世界中的经验效果,并通过贝叶斯遗憾来表征其理论融合。
Bayesian quadrature optimization (BQO) maximizes the expectation of an expensive black-box integrand taken over a known probability distribution. In this work, we study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples. A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set. Though Monte Carlo estimate is unbiased, it has high variance given a small set of samples; thus can result in a spurious objective function. We adopt the distributionally robust optimization perspective to this problem by maximizing the expected objective under the most adversarial distribution. In particular, we propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose. We demonstrate the empirical effectiveness of our proposed framework in synthetic and real-world problems, and characterize its theoretical convergence via Bayesian regret.