论文标题
关于可逆随机矩阵的马尔可夫产品的转移操作员
On Transfer Operators for Markovian Products of Invertible Random Matrices
论文作者
论文摘要
在本文中,我们考虑了马尔可夫产品(不一定是积极的)矩阵,这些产品是从强烈不可还原,合同,有限的矩阵中选择的。我们构建了马尔可夫传输运算符,并证明了光谱属性,该特性在与随机矩阵乘积问题相关的顶部Lyapunov指数与相应的Markovian转移操作员的光谱之间建立了连接。
In this article we consider the Markovian products of invertible (not necessarily positive) matrices chosen from a strongly irreducible, contracting, finite set of matrices. We construct Markovian transfer operators and prove the spectral property which draws a connection between the top Lyapunov exponent associated to the random matrix product problem and the spectrum of the corresponding Markovian transfer operator.