论文标题
完全缺乏$ 3 $ - 完美的数字
On Exactly $3$-Deficient-Perfect Numbers
论文作者
论文摘要
令$ n $和$ k $为正整数,$σ(n)$ $ n $的所有正分数的总和。 We call $n$ an exactly $k$-deficient-perfect number with deficient divisors $d_1, d_2, \ldots, d_k$ if $d_1, d_2, \ldots, d_k$ are distinct proper divisors of $n$ and $σ(n)=2n-(d_1+d_2+\ldots + d_k)$. In this article, we show that the only odd exactly $3$-deficient-perfect number with at most two distinct prime factors is $1521=3^2 \cdot 13^2$.
Let $n$ and $k$ be positive integers and $σ(n)$ the sum of all positive divisors of $n$. We call $n$ an exactly $k$-deficient-perfect number with deficient divisors $d_1, d_2, \ldots, d_k$ if $d_1, d_2, \ldots, d_k$ are distinct proper divisors of $n$ and $σ(n)=2n-(d_1+d_2+\ldots + d_k)$. In this article, we show that the only odd exactly $3$-deficient-perfect number with at most two distinct prime factors is $1521=3^2 \cdot 13^2$.