论文标题
3D哈伯德模型量子模拟器中的无序控制放松
Disorder-controlled relaxation in a 3D Hubbard model quantum simulator
论文作者
论文摘要
了解材料中强相关电子的集体行为仍然是许多粒子量子物理学的核心问题。这些系统的最小描述由无序的费米 - 哈伯德模型(DFHM)提供,该模型将运动相互作用与无序晶格中的运动相互作用与局部颗粒间相互作用。尽管它的元素最小,但由于系统在较高的空间维度中结合了均衡外行为,相互作用和无序的系统的复杂性,DFHM的许多动力学特性尚未得到很好的了解。在这里,我们使用由限制在光学晶格中的费米原子组成的量子模拟器上的相互作用 - 猝灭式测量值研究了三维(3D)DFHM中双重占用的晶格位点的松弛动力学。除了观察到抑制障碍放松的广泛研究的效果外,我们还发现,强相互作用与无序之间的合作还导致出现了以\ textit {discectit {dimelly-nhanced}的放松为特征的动力学状态。为了支持这些结果,我们开发了一种近似的数值方法和一个现象学模型,每个模型都捕获了衰减动力学的基本物理。我们的结果为DFHM的先前无法访问的制度提供了一个理论框架,并证明了量子模拟器能够通过最小模型来理解复杂的多体系统的能力。
Understanding the collective behavior of strongly correlated electrons in materials remains a central problem in many-particle quantum physics. A minimal description of these systems is provided by the disordered Fermi-Hubbard model (DFHM), which incorporates the interplay of motion in a disordered lattice with local inter-particle interactions. Despite its minimal elements, many dynamical properties of the DFHM are not well understood, owing to the complexity of systems combining out-of-equilibrium behavior, interactions, and disorder in higher spatial dimensions. Here, we study the relaxation dynamics of doubly occupied lattice sites in the three-dimensional (3D) DFHM using interaction-quench measurements on a quantum simulator composed of fermionic atoms confined in an optical lattice. In addition to observing the widely studied effect of disorder inhibiting relaxation, we find that the cooperation between strong interactions and disorder also leads to the emergence of a dynamical regime characterized by \textit{disorder-enhanced} relaxation. To support these results, we develop an approximate numerical method and a phenomenological model that each capture the essential physics of the decay dynamics. Our results provide a theoretical framework for a previously inaccessible regime of the DFHM and demonstrate the ability of quantum simulators to enable understanding of complex many-body systems through minimal models.