论文标题

在两种组分的玻色网凝结物中集体原子运动的常规和混乱行为

Regular and chaotic behavior of collective atomic motion in two-component Bose-Einstein condensates

论文作者

Syu, Wei-Can, Lee, Da-Shin, Lin, Chi-Yong

论文摘要

我们从理论上研究了二元玻色 - 因斯坦冷凝物被困在单孔谐波潜力中,以探测集体原子运动的动力学。这个想法是通过Feshbach共振选择可调的散射长度,以便在两种类型的冷凝物的地面波函数上是空间不混溶的,其中一种位于电陷阱中心的冷凝物之一可以有效地作为第二种原子的双侧冷凝物之间的潜在屏障。在双侧冷凝物之间的小波函数重叠的情况下,可以在两种模式近似中参数将其空间部分与时间依赖的总体不平衡$ z $以及两个波函数之间的相位差$ ϕ进行参数。中间的冷凝物可以通过高斯波函数近似,并具有冷凝水中心$ξ$的位移。在中央冷凝物的时间依赖性位移的驱动下,我们发现双侧冷凝物之间的集体原子运动的约瑟夫森振荡以及它们对宏观自我捕获效应的非谐概括。此外,随着双侧冷凝物波函数的增加,通过正确选择可调的原子散射长度,如果系统从固定点的状态出发,则发现混乱的振荡。 Melnikov使用派生的$ z,\,ϕ $和$ξ$方程的同型解决方案的方法可以成功证明混乱的存在合理性。所有结果都与全职依赖的GROSS-PITAEVSKII方程的数值解决方案一致。

We theoretically study binary Bose-Einstein condensates trapped in a single-well harmonic potential to probe the dynamics of collective atomic motion. The idea is to choose tunable scattering lengths through Feshbach resonances such that the ground-state wave function for two types of the condensates are spatially immiscible where one of the condensates, located at the center of the potential trap, can be effectively treated as a potential barrier between bilateral condensates of the second type of atoms. In the case of small wave function overlap between bilateral condensates, one can parametrize their spatial part of the wave functions in the two-mode approximation together with the time-dependent population imbalance $z$ and the phase difference $ϕ$ between two wave functions. The condensate in the middle can be approximated by a Gaussian wave function with the displacement of the condensate center $ξ$. As driven by the time-dependent displacement of the central condensate, we find the Josephson oscillations of the collective atomic motion between bilateral condensates as well as their anharmonic generalization of macroscopic self-trapping effects. In addition, with the increase in the wave function overlap of bilateral condensates by properly choosing tunable atomic scattering lengths, the chaotic oscillations are found if the system departs from the state of a fixed point. The Melnikov approach with a homoclinic solution of the derived $z,\,ϕ$, and $ξ$ equations can successfully justify the existence of chaos. All results are consistent with the numerical solutions of the full time-dependent Gross-Pitaevskii equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源