论文标题
涉及Euler功能的双胆方程
Diophantine equations involving Euler function
论文作者
论文摘要
在本文中,我们表明方程$φ(| x^{m} -y^{m} |)= | x^{n} -y^{n} | $在整数中没有非平凡的解决方案,$ x,y,m,m,n $ cans $ xy \ neqy \ neq0,m> 0,m> 0,n> 0,n> 0,n> 0,n> 0,n> 0,n> 0,n> $ $ n> 0,n> 0,n> 0,n> $ $ n> 0,n> $ n> 0,m> n $ $ $(x,y,m,n)=((2^{t-1} \ pm1), - (2^{t-1}} \ mp1),2,1),( - ( - (2^{t-1} \ pm1),(2^{t-1} \ pm1),(2^{t-^{t-1}} \ mp1),2,1),2,1),2,1),$ T $ a $ t $ teequation $ te \ geq $ te \ geq. $φ(| \ frac {x^{m} -y^{m}} {x-y} |)= | \ frac {x^{x^{n} -y^{n}} {x-y} {x-y} | $在整数中没有非实用的解决方案,$ x,y,m,m,m,n $ aby $ x,y,m,n $ n $ xy \ neq。 $(x,y,m,n)=(a \ pm1,-a,1,2),(a \ pm i,-a,2,1),$ a $是$ i = 1,2的整数。
In this paper, we show that the equation $φ(|x^{m}-y^{m}|)=|x^{n}-y^{n}|$ has no nontrivial solutions in integers $x,y,m,n$ with $xy\neq0, m>0, n>0$ except for the solutions $(x,y,m,n)=((2^{t-1}\pm1),-(2^{t-1}\mp1),2,1), (-(2^{t-1}\pm1),(2^{t-1}\mp1),2,1),$ where $t$ is a integer with $t\geq 2.$ The equation $φ(|\frac{x^{m}-y^{m}}{x-y}|)=|\frac{x^{n}-y^{n}}{x-y}|$ has no nontrivial solutions in integers $x,y,m,n$ with $xy\neq0, m>0, n>0$ except for the solutions $(x,y,m,n)=(a\pm1, -a, 1, 2), (a\pm i, -a, 2, 1),$ where $a$ is a integer with $i=1,2.$