论文标题

在$ \ textit {c中无监督的控制信号及其编码。秀丽隐杆线} $全脑记录

Unsupervised learning of control signals and their encodings in $\textit{C. elegans}$ whole-brain recordings

论文作者

Fieseler, Charles, Zimmer, Manuel, Kutz, J. Nathan

论文摘要

$ \ textit {c。最近的全脑成像实验。秀丽隐杆线} $揭示了神经种群动力学编码低维歧管上行为之间的运动命令和刻板印象的过渡。表征该流形动力学的努力使用了分段线性模型来描述整个状态空间,但是单个全局动力学模型如何生成观察到的动力学是未知的。在这里,我们提出了一个控制框架,以实现这种动力学的全局模型,在该模型中,基本的线性动力学由稀疏控制信号驱动。该方法以无监督的方式学习控制信号,然后使用$ \ textIt {Dynamic Mode用Control} $(DMDC)来创建可以重建全脑成像数据的第一个全局线性动力学系统。这些控制信号被证明与行为之间的过渡有关。此外,我们分析了这些控制信号的时间延迟编码,表明可以从先前与行为过渡有关的神经元中预测这些过渡,但也可以从以前未识别的其他神经元中进行预测。此外,我们的分解方法使人们可以理解观察到的非线性全局动力学,而将其视为具有控制的线性动力学。所提出的数学框架是通用的,可以推广到其他神经感觉系统,可能以一种完全无监督的方式揭示过渡及其编码。

Recent whole brain imaging experiments on $\textit{C. elegans}$ has revealed that the neural population dynamics encode motor commands and stereotyped transitions between behaviors on low dimensional manifolds. Efforts to characterize the dynamics on this manifold have used piecewise linear models to describe the entire state space, but it is unknown how a single, global dynamical model can generate the observed dynamics. Here, we propose a control framework to achieve such a global model of the dynamics, whereby underlying linear dynamics is actuated by sparse control signals. This method learns the control signals in an unsupervised way from data, then uses $\textit{ Dynamic Mode Decomposition with control}$ (DMDc) to create the first global, linear dynamical system that can reconstruct whole-brain imaging data. These control signals are shown to be implicated in transitions between behaviors. In addition, we analyze the time-delay encoding of these control signals, showing that these transitions can be predicted from neurons previously implicated in behavioral transitions, but also additional neurons previously unidentified. Moreover, our decomposition method allows one to understand the observed nonlinear global dynamics instead as linear dynamics with control. The proposed mathematical framework is generic and can be generalized to other neurosensory systems, potentially revealing transitions and their encodings in a completely unsupervised way.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源