论文标题

网络修剪的过滤草图

Filter Sketch for Network Pruning

论文作者

Lin, Mingbao, Cao, Liujuan, Li, Shaojie, Ye, Qixiang, Tian, Yonghong, Liu, Jianzhuang, Tian, Qi, Ji, Rongrong

论文摘要

我们通过信息保存预训练的网络权重(过滤器)提出了一种新型的网络修剪方法。使用信息保存的网络修剪作为矩阵草图问题,可以通过现成的频繁方向方法有效地解决。我们的方法(称为filtersketch)编码了预训练的权重的二阶信息,这使得可以通过简单的微调过程恢复修剪的网络的表示能力。 Filtersketch既不需要从头开始训练,也不需要数据驱动的迭代优化,从而导致修剪优化的时间成本降低了数量的数量。 CIFAR-10上的实验表明,过滤器可降低63.3%的flops和prunes的网络参数的59.9%的网络参数,而RESNET-1110的精确度可忽略不计。在ILSVRC-2012上,它减少了45.5%的拖鞋,并删除了43.0%的参数,而Resnet-50的准确度仅为0.69%。可以在https://github.com/lmbxmu/filtersketch上找到我们的代码和修剪模型。

We propose a novel network pruning approach by information preserving of pre-trained network weights (filters). Network pruning with the information preserving is formulated as a matrix sketch problem, which is efficiently solved by the off-the-shelf Frequent Direction method. Our approach, referred to as FilterSketch, encodes the second-order information of pre-trained weights, which enables the representation capacity of pruned networks to be recovered with a simple fine-tuning procedure. FilterSketch requires neither training from scratch nor data-driven iterative optimization, leading to a several-orders-of-magnitude reduction of time cost in the optimization of pruning. Experiments on CIFAR-10 show that FilterSketch reduces 63.3% of FLOPs and prunes 59.9% of network parameters with negligible accuracy cost for ResNet-110. On ILSVRC-2012, it reduces 45.5% of FLOPs and removes 43.0% of parameters with only 0.69% accuracy drop for ResNet-50. Our code and pruned models can be found at https://github.com/lmbxmu/FilterSketch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源