论文标题

通过结合深度学习和替代辅助遗传算法,观察者变异感知的医学图像分割

Observer variation-aware medical image segmentation by combining deep learning and surrogate-assisted genetic algorithms

论文作者

Dushatskiy, Arkadiy, Mendrik, Adriënne M., Bosman, Peter A. N., Alderliesten, Tanja

论文摘要

最近,具有深度学习算法的医学图像自动分割方面取得了巨大进展。在大多数作品中,观察者的变化被认为是一个问题,因为它使训练数据异质性,但到目前为止,尚未尝试明确捕获这种变异。在这里,我们提出了一种能够模仿各种分割样式的方法,该方法有可能改善自动分割方法的质量和临床接受。在这项工作中,我们没有在所有可用数据上训练一个神经网络,而是分别培训了几个神经网络的数据子组,分别属于不同细分变化的数据。因为先验的数据可能不清楚数据中存在哪些分割样式,并且由于不同的样式不一定将一对一映射到不同的观察者,因此应自动确定子组。我们通过使用遗传算法搜索最佳数据分区来实现这一目标。因此,每个网络都可以从分组培训数据中学习特定的细分样式。我们提供了具有模拟观察者变化的开源前列腺分割MRI数据的原理结果证明。与对所有数据训练的网络相比,我们的方法在骰子和表面骰子系数方面提供了多达23%(取决于模拟的变化)。

There has recently been great progress in automatic segmentation of medical images with deep learning algorithms. In most works observer variation is acknowledged to be a problem as it makes training data heterogeneous but so far no attempts have been made to explicitly capture this variation. Here, we propose an approach capable of mimicking different styles of segmentation, which potentially can improve quality and clinical acceptance of automatic segmentation methods. In this work, instead of training one neural network on all available data, we train several neural networks on subgroups of data belonging to different segmentation variations separately. Because a priori it may be unclear what styles of segmentation exist in the data and because different styles do not necessarily map one-on-one to different observers, the subgroups should be automatically determined. We achieve this by searching for the best data partition with a genetic algorithm. Therefore, each network can learn a specific style of segmentation from grouped training data. We provide proof of principle results for open-sourced prostate segmentation MRI data with simulated observer variations. Our approach provides an improvement of up to 23% (depending on simulated variations) in terms of Dice and surface Dice coefficients compared to one network trained on all data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源