论文标题

通过自动结构搜索频道修剪

Channel Pruning via Automatic Structure Search

论文作者

Lin, Mingbao, Ji, Rongrong, Zhang, Yuxin, Zhang, Baochang, Wu, Yongjian, Tian, Yonghong

论文摘要

渠道修剪是压缩深神经网络的主要方法之一。为此,大多数现有的修剪方法都集中在基于脑海规则设计的重要性/优化或正则化的选择通道(过滤器)上,而thumb设计则在次优的修剪中缺陷。在本文中,我们提出了一种基于人造蜜蜂菌落算法(ABC)的新通道修剪方法,该方法被称为ABCPRUNER,旨在有效地找到最佳的修剪结构,即每一层中的通道数,而不是选择“重要”通道作为以前的工作。为了解决深网修剪结构的巨大组合,我们首先建议缩小保留通道仅限于特定空间的组合,因此可以大大降低修剪结构的组合。然后,我们将最佳修剪结构的搜索作为优化问题进行搜索,并集成ABC算法以自动方式解决该算法以减少人类干扰。 ABCPRUNER已被证明更有效,这也使微调能够以端到端的方式进行有效进行。源代码可以在https://github.com/lmbxmu/abcpruner上找到。

Channel pruning is among the predominant approaches to compress deep neural networks. To this end, most existing pruning methods focus on selecting channels (filters) by importance/optimization or regularization based on rule-of-thumb designs, which defects in sub-optimal pruning. In this paper, we propose a new channel pruning method based on artificial bee colony algorithm (ABC), dubbed as ABCPruner, which aims to efficiently find optimal pruned structure, i.e., channel number in each layer, rather than selecting "important" channels as previous works did. To solve the intractably huge combinations of pruned structure for deep networks, we first propose to shrink the combinations where the preserved channels are limited to a specific space, thus the combinations of pruned structure can be significantly reduced. And then, we formulate the search of optimal pruned structure as an optimization problem and integrate the ABC algorithm to solve it in an automatic manner to lessen human interference. ABCPruner has been demonstrated to be more effective, which also enables the fine-tuning to be conducted efficiently in an end-to-end manner. The source codes can be available at https://github.com/lmbxmu/ABCPruner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源