论文标题

塔纳基人的动机类别

Graded-Tannakian categories of motives

论文作者

Schäppi, Daniel

论文摘要

鉴于刚性张量的三角形类别和矢量空间值的同源函数,昆纳斯同构构成,我们构建了一个普遍的渐变塔纳基人类别,通过该类别,给定的同源函数因素。我们将其用于(无条件地)构建与固定的Weil共同体学理论相关的纯粹动机等级的Tarnakian类别,并且具有纤维函子,实现了给定的共同体学理论。对于$ \ ell $ -ADIC的共同体学和在有限领域代数的地面场,此类别是Tannakian。在这种情况下,我们特别获得动机galois群体,它们自然地在$ \ ell $ - adic的共同体上行动,而无需假设任何标准猜想。我们表明,如果标准猜想d成立,这些分级的Tannakian类别等于Grothendieck的纯粹动机类别。

Given a rigid tensor-triangulated category and a vector space valued homological functor for which the Künneth isomorphism holds, we construct a universal graded-Tannakian category through which the given homological functor factors. We use this to (unconditionally) construct graded-Tannakian categories of pure motives associated to a fixed Weil cohomology theory, with a fiber functor realizing the given cohomology theory. For $\ell$-adic cohomology and a ground field which is algebraic over a finite field, this category is Tannakian. In this case, we obtain in particular motivic Galois groups which act naturally on $\ell$-adic cohomology without assuming any of the standard conjectures. We show that these graded-Tannakian categories are equivalent to Grothendieck's category of pure motives if the standard conjecture D holds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源