论文标题
花圈产品中的简单组和不可还原的晶格
Simple groups and irreducible lattices in wreath products
论文作者
论文摘要
我们认为有限生成的群体作用于一棵普通树上,几乎规定了当地行动。我们表明,这些基团在某些局部紧凑的花圈产品中作为共同体不可及的晶格嵌入。这提供了有限生成的简单组的示例准则,用于花圈产品$ c \ wr f $,其中$ c $是有限的群体,而非亚洲自由组的$ f $。
We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C \wr F$, where $C$ is a finite group and $F$ a non-abelian free group.