论文标题
通过终生测量调查的中子缺陷$^{188} $ HG的形状共存
Shape coexistence in the neutron-deficient $^{188}$Hg investigated via lifetime measurements
论文作者
论文摘要
$ z \ $ 82 $区域的形状共存已在水星,铅和polonium同位素中建立。甚至$ 100 \ leq n \ leq 106 $的甚至均匀的汞同位素呈现此现象的多个指纹,似乎不再以$ n \ geq 110 $出现。根据许多理论计算,在$^{188} $ HG同位素中预测形状共存。 $^{188} $ hg核是使用两个不同的融合蒸发反应填充的,有两个目标,$^{158} $ gd和$^{160} $ gd,$^{34} $ s的光束由Tandem-Alpi Accelerators Complex提供,在Lablyatori nazionalii nazionali nazionali di nazararori di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di di。使用中子墙阵列中的信息选择了感兴趣的渠道,而使用Galileo $γ$ -Ray阵列检测到$γ$射线。使用专用的Galileo柱塞装置使用后距离距离多普勒移位法确定激发态的寿命。使用两带混合和旋转模型,从实验结果中获得了纯构型的变形。将提取的过渡强度与使用最先进的对称性构型混合(SCCM)和五维集体汉密尔顿(5DCH)方法进行了比较,以阐明$^{188} $ HG HG核中观察到的结构的性质。预测了一个扁平的,正常的和超高的倾斜条带,还讨论了其基础的壳结构。
Shape coexistence in the $Z \approx 82$ region has been established in mercury, lead and polonium isotopes. Even-even mercury isotopes with $100 \leq N \leq 106$ present multiple fingerprints of this phenomenon, which seems to be no longer present for $N \geq 110$. According to a number of theoretical calculations, shape coexistence is predicted in the $^{188}$Hg isotope. The $^{188}$Hg nucleus was populated using two different fusion-evaporation reactions with two targets, $^{158}$Gd and $^{160}$Gd, and a beam of $^{34}$S, provided by the Tandem-ALPI accelerators complex at the Laboratori Nazionali di Legnaro. The channels of interest were selected using the information from the Neutron Wall array, while the $γ$ rays were detected using the GALILEO $γ$-ray array. The lifetimes of the excited states were determined using the Recoil Distance Doppler-Shift method, employing the dedicated GALILEO plunger device. Using the two-bands mixing and rotational models, the deformation of the pure configurations was obtained from the experimental results. The extracted transition strengths were compared with those calculated with the state-of-the-art symmetry-conserving configuration-mixing (SCCM) and five-dimentional collective Hamiltonian (5DCH) approaches in order to shed light on the nature of the observed structures in the $^{188}$Hg nucleus. An oblate, a normal- and a super-deformed prolate bands were predicted and their underlying shell structure was also discussed.