论文标题

蒙特卡洛科学

Monte-Carlo science

论文作者

Jimenez, Javier

论文摘要

本文探讨了科学发现过程可以自动化多远。以二维湍流中的因果关系鉴定为例,它可以探测计划实验的常规步骤来检验假设的方法,可以用“盲目”随机实验来代替,并指出计算机的提高效率开始使这种“ Monte-Carlo-Carlo”方法实用。数据生成,分类和模型创建的过程进行了一些详细的描述,强调了验证和验证的重要性。尽管本文的目的是探索该过程,而不是对二维湍流进行建模,但令人鼓舞的是,蒙特卡洛工艺自然会导致涡旋偶极子作为流量的基础,与更传统的个体涡流核心相提并论。尽管不是完全新颖,但这种“自发”发现支持了这样的说法:随机实验的重要优势是绕过研究人员的偏见并减轻范式锁定。最终注意到,该方法可以在实际时期扩展到三维流。

This paper explores how far the scientific discovery process can be automated. Using the identification of causally significant flow structures in two-dimensional turbulence as an example, it probes how far the usual procedure of planning experiments to test hypotheses can be substituted by `blind' randomised experiments, and notes that the increased efficiency of computers is beginning to make such a `Monte-Carlo' approach practical in fluid mechanics. The process of data generation, classification and model creation is described in some detail, stressing the importance of validation and verification. Although the purpose of the paper is to explore the procedure, rather than to model two-dimensional turbulence, it is encouraging that the Monte Carlo process naturally leads to the consideration of vortex dipoles as building blocks of the flow, on a par with the more conventional individual vortex cores. Although not completely novel, this `spontaneous' discovery supports the claim that an important advantage of randomised experiments is to bypass researcher prejudice and alleviate paradigm lock. It is finally noted that the method can be extended to three-dimensional flows in practical times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源